A semi-supervised sparse K-Means algorithm
نویسندگان
چکیده
We consider the problem of data clustering with unidentified feature quality and when a small amount labelled is provided. An unsupervised sparse method can be employed in order to detect subgroup features necessary for semi-supervised use create constraints enhance solution. In this paper we propose K-Means variant that employs these techniques. show algorithm maintains high performance other algorithms addition preserves ability identify informative from uninformative features. examine on synthetic real world sets. scenarios different types as well initialisation methods.
منابع مشابه
Image Segmentation Using Semi-Supervised k-Means
Extracting the region of interest is a very challenging task in Image Processing. Image segmentation is an important technique for image processing which aims at partitioning the image into different homogeneous regions or clusters. Lots of general-purpose techniques and algorithms have been developed and widely applied in various application areas. In this paper, a Semi-Supervised k-means segm...
متن کاملSemi-supervised Text Categorization Using Recursive K-means Clustering
In this paper, we present a semi-supervised learning algorithm for classification of text documents. A method of labeling unlabeled text documents is presented. The presented method is based on the principle of divide and conquer strategy. It uses recursive K-means algorithm for partitioning both labeled and unlabeled data collection. The K-means algorithm is applied recursively on each partiti...
متن کاملA robust and sparse K-means clustering algorithm
Abstract In many situations where the interest lies in identifying clusters one might expect that not all available variables carry information about these groups. Furthermore, data quality (e.g. outliers or missing entries) might present a serious and sometimes hard-to-assess problem for large and complex datasets. In this paper we show that a small proportion of atypical observations might ha...
متن کاملSupervised k-Means Clustering
The k-means clustering algorithm is one of the most widely used, effective, and best understood clustering methods. However, successful use of k-means requires a carefully chosen distance measure that reflects the properties of the clustering task. Since designing this distance measure by hand is often difficult, we provide methods for training k-means using supervised data. Given training data...
متن کاملPersistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition Letters
سال: 2021
ISSN: ['1872-7344', '0167-8655']
DOI: https://doi.org/10.1016/j.patrec.2020.11.015